Utils
utils ¶
Utilities related to Pretalx
Col ¶
Convention of Pretalx column names for the functions below.
affiliation = 'Affiliation' class-attribute instance-attribute ¶
availability = 'Availability' class-attribute instance-attribute ¶
availability_comment = 'Availability Comment' class-attribute instance-attribute ¶
biography = 'Biography' class-attribute instance-attribute ¶
comment = 'Comment' class-attribute instance-attribute ¶
created = 'Created' class-attribute instance-attribute ¶
duration = 'Duration' class-attribute instance-attribute ¶
email = 'Email' class-attribute instance-attribute ¶
nreviews = '#Reviews' class-attribute instance-attribute ¶
pending_state = 'Pending state' class-attribute instance-attribute ¶
pretalx_user = 'Pretalx user' class-attribute instance-attribute ¶
public = 'Public' class-attribute instance-attribute ¶
review_score = 'Review Score' class-attribute instance-attribute ¶
speaker_code = 'Speaker code' class-attribute instance-attribute ¶
speaker_name = 'Speaker name' class-attribute instance-attribute ¶
state = 'State' class-attribute instance-attribute ¶
submission = 'Submission' class-attribute instance-attribute ¶
submission_type = 'Submission type' class-attribute instance-attribute ¶
submission_type_id = 'Submission type id' class-attribute instance-attribute ¶
title = 'Title' class-attribute instance-attribute ¶
track = 'Track' class-attribute instance-attribute ¶
reviews_as_df(reviews: Iterable[Review]) -> pd.DataFrame ¶
Convert the reviews to a dataframe
Source code in src/pytanis/pretalx/utils.py
def reviews_as_df(reviews: Iterable[Review]) -> pd.DataFrame:
"""Convert the reviews to a dataframe"""
df = pd.DataFrame([review.model_dump() for review in reviews])
# make first letter of column upper-case in accordance with our convention
df.rename(columns={col: col.title() for col in df.columns}, inplace=True)
# user is the speaker name to use for joining
df.rename(columns={'User': Col.pretalx_user, 'Score': Col.review_score}, inplace=True)
return df
speakers_as_df(speakers: Iterable[Speaker], *, with_questions: bool = False, question_prefix: str = 'Q: ') -> pd.DataFrame ¶
Convert speakers into a dataframe
Make sure to have params={"questions": "all"} for the PretalxAPI if with_questions is True.
Source code in src/pytanis/pretalx/utils.py
def speakers_as_df(
speakers: Iterable[Speaker], *, with_questions: bool = False, question_prefix: str = 'Q: '
) -> pd.DataFrame:
"""Convert speakers into a dataframe
Make sure to have `params={"questions": "all"}` for the PretalxAPI if `with_questions` is True.
"""
rows = []
for speaker in speakers:
row = {
Col.speaker_code: speaker.code,
Col.speaker_name: speaker.name,
Col.email: speaker.email,
Col.biography: speaker.biography,
Col.submission: speaker.submissions,
}
if with_questions and speaker.answers is not None:
for answer in speaker.answers:
# The API returns also questions that are 'per proposal/submission', we get these using the
# submission endpoint and don't want them here due to ambiguity if several submission were made.
if answer.person is not None:
row[f'{question_prefix}{answer.question.question.en}'] = answer.answer
rows.append(row)
return pd.DataFrame(rows)
subs_as_df(subs: Iterable[Submission], *, with_questions: bool = False, question_prefix: str = 'Q: ') -> pd.DataFrame ¶
Convert submissions into a dataframe
Make sure to have params={"questions": "all"} for the PretalxAPI if with_questions is True.
Source code in src/pytanis/pretalx/utils.py
def subs_as_df(
subs: Iterable[Submission], *, with_questions: bool = False, question_prefix: str = 'Q: '
) -> pd.DataFrame:
"""Convert submissions into a dataframe
Make sure to have `params={"questions": "all"}` for the PretalxAPI if `with_questions` is True.
"""
rows = []
for sub in subs:
row = {
Col.submission: sub.code,
Col.title: sub.title,
Col.track: sub.track.en if sub.track else None,
Col.speaker_code: [speaker.code for speaker in sub.speakers],
Col.speaker_name: [speaker.name for speaker in sub.speakers],
Col.duration: sub.duration,
Col.submission_type: sub.submission_type.en,
Col.submission_type_id: sub.submission_type_id,
Col.state: sub.state.value,
Col.pending_state: None if sub.pending_state is None else sub.pending_state.value,
Col.created: sub.created,
}
if with_questions and sub.answers is not None:
for answer in sub.answers:
row[f'{question_prefix}{answer.question.question.en}'] = answer.answer
rows.append(row)
return pd.DataFrame(rows)